CO2 | Editorial Board | |
473-474 | Proceedings of the Eighth International Workshop on Railway Noise, Buxton, England, 8–11 September 2004 | D.J. Thompson |
475-484 | Improvement of the noise Technical Specifications for Interoperability: The input of the NOEMIE project | P. Fodiman, M. Staiger |
485-495 | The use of decay rates to analyse the performance of railway track in rolling noise generation | C.J.C. Jones, D.J. Thompson, R.J. Diehl |
496-509 | Comparison of wheel/rail noise radiation on Japanese railways using the TWINS model and microphone array measurements | T. Kitagawa, D.J. Thompson |
510-521 | Multi-disciplinary optimization of railway wheels | J.C.O. Nielsen, C.R. Fredö |
522-534 | A comprehensive track model for the improvement of corrugation models | J. Gómez, E.G. Vadillo, J. Santamaría |
535-546 | High speed train noise emission: Latest investigation of the aerodynamic/rolling noise contribution | C. Mellet, F. Létourneaux, F. Poisson, C. Talotte |
547-556 | Localization of aerodynamic noise sources of Shinkansen trains | K. Nagakura |
557-565 | Measurements of the dynamic railpad properties | J. Maes, H. Sol, P. Guillaume |
566-574 | On the rolling noise generation due to wheel/track parametric excitation | T.X. Wu, D.J. Thompson |
575-586 | Prediction of ground vibration from trains using the wavenumber finite and boundary element methods | X. Sheng, C.J.C. Jones, D.J. Thompson |
587-598 | An analytical model for ground vibrations from accelerating trains | Anders Karlström |
599-610 | Ground vibration due to railway traffic—The calculation of the effects of moving static loads and their experimental verification | L. Auersch |
611-625 | Coupled boundary and finite element analysis of vibration from railway tunnels—a comparison of two- and three-dimensional models | L. Andersen, C.J.C. Jones |
626-644 | Vibrations due to a test train at variable speeds in a deep bored tunnel embedded in London clay | G. Degrande, M. Schevenels, P. Chatterjee, W. Van de Velde, P. Hölscher, V. Hopman, A. Wang, N. Dadkah |
645-666 | A numerical model for ground-borne vibrations from underground railway traffic based on a periodic finite element–boundary element formulation | G. Degrande, D. Clouteau, R. Othman, M. Arnst, H. Chebli, R. Klein, P. Chatterjee, B. Janssens |
667-679 | A power flow method for evaluating vibration from underground railways | M.F.M. Hussein, H.E.M. Hunt |
680-690 | Prediction of interior noise in buildings generated by underground rail traffic | A.B. Nagy, P. Fiala, F. Márki, F. Augusztinovicz, G. Degrande, S. Jacobs, D. Brassenx |
691-700 | Curve squeal of urban rolling stock—Part 1: State of the art and field measurements | N. Vincent, J.R. Koch, H. Chollet, J.Y. Guerder |
701-709 | Curve squeal of urban rolling stock—Part 2: Parametric study on a 1/4 scale test rig | J.R. Koch, N. Vincent, H. Chollet, O. Chiello |
710-727 | Curve squeal of urban rolling stock—Part 3: Theoretical model | O. Chiello, J.-B. Ayasse, N. Vincent, J.-R. Koch |
728-734 | Combating Curve Squeal: Monitoring existing applications | B. Müller, J. Oertli |
735-746 | TGV disc brake squeal | X. Lorang, F. Foy-Margiocchi, Q.S. Nguyen, P.E. Gautier |
747-757 | Top-of-rail friction control for curve noise mitigation and corrugation rate reduction | D.T. Eadie, M. Santoro |
758-765 | Transient models for curve squeal noise | J.F. Brunel, P. Dufrénoy, M. Naït, J.L. Muñoz, F. Demilly |
766-776 | An investigation into the influence of longitudinal creepage on railway squeal noise due to lateral creepage | A.D. Monk-Steel, D.J. Thompson, F.G. de Beer, M.H.A. Janssens |
777-783 | Roughness measurements—Have the necessities changed? | R.J. Diehl, P. Holm |
784-794 | A survey on roughness measurements | E. Verheijen |
795-806 | Out-of-round railway wheels—assessment of wheel tread irregularities in train traffic | Anders Johansson |
807-818 | Simplified contact filters in wheel/rail noise prediction | R.A.J. Ford, D.J. Thompson |
819-829 | Simulations of roughness initiation and growth on railway rails | X. Sheng, D.J. Thompson, C.J.C. Jones, G. Xie, S.D. Iwnicki, P. Allen, S.S. Hsu |
830-855 | Three-dimensional train–track model for study of rail corrugation | X.S. Jin, Z.F. Wen, K.Y. Wang, Z.R. Zhou, Q.Y. Liu, C.H. Li |
856-864 | Interferometric rail roughness measurement at train operational speed | F. Fidecaro, G. Licitra, A. Bertolini, E. Maccioni, M. Paviotti |
865-872 | Investigations and results concerning railway-induced ground-borne vibrations in Germany | K.G. Degen, W. Behr, H.-P. Grütz |
873-877 | Performance of ballast mats on passenger railroads: Measurement vs. projections | C.E. Hanson, H.L. Singleton Jr. |
878-887 | Analytical and experimental study of sleeper SAT S 312 in slab track Sateba system | C. Guigou-Carter, M. Villot, B. Guillerme, C. Petit |
888-900 | In-service tests of the effectiveness of vibration control measures on the BART rail transit system | Hugh Saurenman, James Phillips |
901-909 | A test rig to investigate slab track structures for controlling ground vibration | S.J. Cox, A. Wang, C. Morison, P. Carels, R. Kelly, O.G. Bewes |
910-920 | Noise control design of railway vehicles–Impact of new legislation | A. Frid, S. Leth, C. Högström, J. Färm |
921-932 | A modelling approach for the vibroacoustic behaviour of aluminium extrusions used in railway vehicles | G. Xie, D.J. Thompson, C.J.C. Jones |
933-943 | Calculation of noise from railway bridges and viaducts: Experimental validation of a rapid calculation model | O.G. Bewes, D.J. Thompson, C.J.C. Jones, A. Wang |
944-952 | The use of dynamic dampers on the rail to reduce the noise of steel railway bridges | Franck Poisson, Florence Margiocchi |
953-964 | Derivation of train track isolation requirement for a steel road bridge based on vibro-acoustic analyses | F. Augusztinovicz, F. Márki, K. Gulyás, A.B. Nagy, P. Fiala, P. Gajdátsy |
965-974 | The influence of real-world rail head roughness on railway noise prediction | A.E.J. Hardy, R.R.K. Jones, S. Turner |
975-985 | Railway source models for integration in the new European noise prediction method proposed in Harmonoise | Corinne Talotte, Paul van der Stap, Matias Ringheim, Michael Dittrich, Xuetao Zhang, Dorothée Stiebel |
986-994 | The Harmonoise/IMAGINE model for traction noise of powered railway vehicles | M.G. Dittrich, X. Zhang |
995-1006 | Directivity of railway noise sources | Xuetao Zhang, Hans G. Jonasson |
1007-1028 | Railway noise measurement method for pass-by noise, total effective roughness, transfer functions and track spatial decay | M.H.A. Janssens, M.G. Dittrich, F.G. de Beer, C.J.C. Jones |
1029-1040 | Evaluation of the interim measurement protocol for railway noise source description | M.H.A. Janssens, H.W. Jansen, M.G. Dittrich |
1041-1050 | Methods and results of field testing of a retrofitted freight train with composite brake blocks | S. Bühler |
1051-1057 | Implementing the retrofitting plan for the European rail freight fleet | P.H. de Vos, M. Bergendorff, M. Brennan, F. van der Zijpp |
1058-1069 | Research on noise and vibration reduction at DB to improve the environmental friendliness of railway traffic | B. Schulte-Werning, M. Beier, K.G. Degen, D. Stiebel |
1070-1077 | Status and perspectives of the “Specially Monitored Track” | B. Asmussen, H. Onnich, R. Strube, L.M. Greven, S. Schröder, K. Jäger, K.G. Degen |
1078-1085 | Railway environmental noise control in China | Gu Xiaoan |
1086-1090 | Developing noise control strategies for entire railway networks | Jakob Oertli |
1091-1097 | Warning horns—Audibility versus environmental impact | A.E.J. Hardy, R.R.K. Jones |
1099-1104 | Volume index | |
EX1-EX2 | Contents (continued) | |